

Reference FOI202223/610

Number:

From: Commercial

Date: 24 February 2023

Subject: Springfield Park Planning Documentation

Under environment regulations and FOI we are requesting;

Q1 Specification and monitoring detail for phase one return of Springfield Park plus

A1 Please see attached documents:

- 14-266-L1 AH Phase 1 Cover System Validation Report March 21
- 191119 Planning Permission
- LCC_Re-instatement_Specification

In regards to the specification, please refer to documents 191119 Planning Permission and LCC_Re-instatement_Specification for a copy of the Liverpool City Council (LCC) specification that was appended to the land exchange agreement and the planning consent where condition 20c requires us to

c) A detailed remediation scheme (if required), has been submitted to and agreed in writing with the LPA. This scheme shall include an appraisal of remedial options, implementation timetable, works schedule, site management objectives, monitoring proposals and remediation validation methodology. The scheme once completed must ensure that the site will not qualify as contaminated land under Part IIA of the Environmental Protection Act 1990 in relation to its intended use.

In regards to the monitoring and proposal, the trust engaged E3P to test and validate the imported soils as required. Please refer to 14-266-L1 AH Phase 1 Cover System Validation Report March 21

- Q2 Method statement for drainage for phase one return of Springfield Park
- A2 Information not held the trust and its engineers are reviewing drainage requirements that are to be fully agreed with Liverpool City Council (LCC). Therefore, the final proposals for a method statement is not currently available for issue.

VALIDATION COMPLETION REPORT

Alder Hey Children's Hospital Alder Road Liverpool L12 2BA

Prepared for:

Alder Hey Children's Hospital

Report Ref: 14-266-R1-1 Date Issued: March 2021

E3P

Taylor Road Urmston Manchester M41 7JQ

+ 44 (0) 161 707 9612 https://e3p.co.uk/

Registered in England CRN: 807255262

QUALITY ASSURANCE

PROJECT NUMBER		14-266	
VERSION	Version 1		
REMARKS	Final		
DATE	3 March 2021		
PREPARED BY	E Fearn		
QUALIFICATIONS	BSc (Hons), MSc, FGS		
SIGNATURE	EFearn		
CHECKED BY	S. Cox		
QUALIFICATIONS	BSc, FGS, AIEMA, MIEnvSc, CEnv		
SIGNATURE	Eax		
AUTHORISED BY	M Dyer		
QUALIFICATIONS	BSc, FGS, AIEMA, MIEnvSc, CEnv		
SIGNATURE	HLD.D		

Table of Contents

1. INTRODUCTION	3
1. INTRODUCTION	3
1.2. Objectives	3
1.3. Limitations	
1.4. Confidentiality	3
2. COVER SYSTEM VALIDATION	4
3. CHEMICAL VALIDATION	5
3.1. TOPSOL AND SUBSOIL	5
3.2. CHEMICAL VALIDATION	5
4. CONCLUSIONS	
APPENDIX I LIMITATIONS	8
APPENDIX II GLOSSARY	
APPENDIX III DRAWINGS	13
APPENDIX IV CHEMICAL TESTING RESULTS	14

1. INTRODUCTION

1.1. BACKGROUND

E3P Ltd has been commissioned by Alder Hey Children's Hospital to produce a Completion Report in relation to the validation of the cover system placed a on a new area of public park on a former hospital site as part of the Alder Hey Children's Hospital, named as Springfield Park, Phase 1.

Liverpool City Council confirmed their general acceptance of the remediation works and subsequent validation works for the proposed residential development, pending the following information:

Validation of the 600mm cover system across the area.

All outstanding information is included within this report.

All acronyms used within this report are defined in the Glossary presented in Appendix II.

1.2. OBJECTIVES

E3P have been instructed to develop a detailed Validation Completion Report associated with the validation of the residential development that will incorporate the following:

- Overview of the validation works undertaken on the development site within the public park areas; and
- Chemical laboratory analysis undertaken of the imported material.

1.3. LIMITATIONS

The limitations of this report are presented in Appendix I.

1.4. CONFIDENTIALITY

E3P has prepared this report solely for the use of the client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from E3P; a charge may be levied against such approval.

2. COVER SYSTEM VALIDATION

Independent validation of areas 1 to 13 was undertaken on Friday 19th February 2021. During the visit, the depth of the cover system was measured to confirm the installation of 450mm subsoil (imported) and 150mm topsoil (imported) with photographs taken by way of validation.

All material used for the cover system was confirmed chemically suitable for use through chemical analysis, discussed further in Section 3.0. All validation works have been completed in strict accordance with the specification previously agreed with Liverpool City Council, this included a geotextile break layer beneath the cover system at 600mm.

All cover system validation photos and the validation location plan are in Appendix III of this report.

3. CHEMICAL VALIDATION

3.1. TOPSOL AND SUBSOIL

All gardens and landscaped areas require a 600mm chemically suitable cover system comprising at least 450mm subsoil and 150mm topsoil.

Subsoil and topsoil materials were tested prior to use within the proposed cover system to confirm their chemical suitability for use within the public park development. The topsoil was sourced from R Drapers Ltd in Simonswood, Kirkby. The subsoil was sourced from CCC Waste Ltd on Stopgate Lane, Kirkby.

3.2. CHEMICAL VALIDATION

Twenty-six subsoil samples were submitted for chemical analysis, the results confirmed that the material is suitable for use within the 600mm cover system within the public park development.

Table 3.1 provides a summary of subsoil samples undertaken for the site for a volume of 6,220 m³.

TABLE 3.1 SUMMARY OF SUBSOIL SAMPLES

Sample Ref	Date Sampled	Report No.	Suitable for Use
SS101	27/08/2021	20-27770-2	Yes
SS102	27/08/2021	20-27770-2	Yes
SS103	27/08/2021	20-27770-2	Yes
SS104	28/09/2021	20-32789-1	Yes
SS105	28/09/2021	20-32789-1	Yes
SS106	28/09/2021	20-32789-1	Yes
SS107	28/09/2021	20-32789-1	Yes
SS108	28/09/2021	20-32789-1	Yes
SS109	28/09/2021	20-32789-1	Yes
SS110	28/09/2021	20-32789-1	Yes
SS111	28/09/2021	20-32789-1	Yes
SS112	28/09/2021	20-32789-1	Yes
SS113	28/09/2021	20-32789-1	Yes
SS114	28/09/2021	20-32789-1	Yes
SS115	02/11/2021	20-39281-1	Yes
SS116	02/11/2021	20-39281-1	Yes
SS117	02/11/2021	20-39281-1	Yes
SS118	02/11/2021	20-39281-1	No
SS119	02/11/2021	20-39281-1	Yes
SS120	02/11/2021	20-39281-1	Yes
SS121	02/11/2021	20-39281-1	Yes
SS122	02/11/2021	20-39281-1	Yes

SS123	08/02/2021	21-56022-1	Yes
SS124	08/02/2021	21-56022-1	Yes
SS125	08/02/2021	21-56022-1	Yes
SS126	08/02/2021	21-56313-1	Yes

Amosite was detected within a sample take at SS118 at levels of <0.001%. This area was resampled on 20th November 2020 (I2 Analytical Report 20-43439-1). Chemical analysis of this sample indicated not detectable levels of asbestos within the soils. It can therefore be deduced that the ACM previously identified was due to cross contamination of imported materials during transport.

Chemical analysis identified no further contaminant exceedances, therefore it has been determined that the imported subsoil is suitable for utilisation within the proposed public park development.

Eleven topsoil samples were submitted for chemical analysis, the results confirmed that the material is suitable for use within the 600mm cover system within the public park development.

Table 3.2 provides a summary of topsoil samples undertaken for the site for a volume of 627 m³.

TABLE 3.2 SUMMARY OF TOPSOIL SAMPLES

Sample Ref	Date Sampled	Report No.	Suitable for Use
TS101	18/09/2020	20-30896-1	Yes
TS102	18/09/2020	20-30896-1	Yes
TS103	18/09/2020	20-30896-1	Yes
TS104	02/11/2020	20-39281-1	Yes
TS105	02/11/2020	20-39281-1	Yes
TS106	02/11/2020	20-39281-1	Yes
TS107	02/11/2020	20-39281-1	Yes
TS108	02/11/2020	20-39281-1	Yes
TS109	02/11/2020	20-39281-1	Yes
TS110	08/02/2021	21-56022-1	Yes
TS111	08/02/2021	21-56022-1	Yes

Chemical analysis identified no further contaminant exceedances, therefore it has been determined that the imported topsoil is suitable for utilisation within the proposed public park development.

All samples were analysed in accordance with the regulatory approved Remediation Strategy.

Sufficient samples have been obtained and analysed to meet the agreed sample frequency of 1 sample per 50m³ topsoil and 1 sample per 250m³ subsoil. Laboratory certificates are included within Appendix IV of this report.

4. CONCLUSIONS

On completion of the validation works undertaken in relation to the installation of a chemically suitable cover system, E3P can confirm that all works were undertaken in strict accordance with the agreed Remediation Strategy and therefore would deem the site suitable for use as a public park development.

E3P do not consider that any further work is necessary.

END OF REPORT

APPENDIX I LIMITATIONS

- 1. This report and its findings should be considered in relation to the terms of reference and objectives agreed between E3P and the client as indicated in Section 1.3.
- 2. For the work, reliance has been placed on publicly available data obtained from the sources identified. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information.
- This report has been produced in accordance with current UK policy and legislative requirements
 for land and groundwater contamination which are enforced by the local authority and the
 Environment Agency. Liabilities associated with land contamination are complex and requires
 advice from legal professionals.
- 4. During the site walkover, reasonable effort has been made to obtain an overview of the site conditions. However, during the site walkover, no attempt has been made to enter areas of the site that are unsafe or present a risk to health and safety, are locked, barricaded, overgrown, or the location of the area has not been made known or accessible.
- Access considerations, the presence of services and the activities being carried out on the site limited the locations where sampling locations could be installed and the techniques that could be used.
- 6. Site sensitivity assessments have been made based on available information at the time of writing and are ultimately for the decision of the regulatory authorities.
- 7. Where mention has been made to the identification of Japanese Knotweed and other invasive plant species and asbestos or asbestos-containing materials, this is for indicative purposes only and do not constitute or replace full and proper surveys.
- The executive summary, conclusions and recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon without considering the context of the report in full.
- 9. E3P cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The copyright in this report and other plans and documents prepared by E3P is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of this may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by E3P in this connection without their explicit written agreement there to by E3P.
- 10. New information, revised practices or changes in legislation may necessitate the reinterpretation of the report, in whole or in part.

APPENDIX II GLOSSARY

TERMS

ACM	Asbestos-containing material	MMP	Materials management plan
ADS	Acoustic design statement	ND	Not detected
AST	Above-ground storage tank	NDP	Nuclear density probe
BGS	British Geological Survey	NMP	Noise management plan
BSI	British Standards Institute	NPSE	Noise policy statement for England
BTEX	Benzene, toluene, ethylbenzene, xylenes	NR	Not recorded
CA	Coal Authority	PAH	Polycyclic aromatic hydrocarbon
CBR	California bearing ratio	PCB	Polychlorinated biphenyl
CIEH	Chartered Institute of Environmental Health	PI	Plasticity index
CIRIA	Construction Industry Research Association	PID	Photo ionisation detector
CLEA	Contaminated land exposure assessment	POS	Public open space
CML	Council of Mortgage Lenders	PPE	Personnel protective equipment
CoC	Contaminants of concern	ProPG	Professional practice guidance
CSM	Conceptual site model	QA	Quality assurance
DNAPL	Dense non-aqueous phase liquid (chlorinated solvents, PCB)	SGV	Soil guideline value
DWS	Drinking water standard	SPH	Separate-phase hydrocarbon
EA	Environment Agency	SPT	Standard penetration test
EQS	Environmental quality standard	SVOC	Semi-volatile organic compound
FFL	Finished floor level	TPH	Total and speciated petroleum hydrocarbon
GAC	General assessment criteria	TPH CWG	Total Petroleum Hydrocarbon (Criteria Working Group)
GL	Ground level	UKWIR	United Kingdom Water Infrastructure Risk
GSV	Gas screening value	UST	Underground storage tank
HCV	Health criteria value	VCC	Vibro-concrete column
ICSM	Initial conceptual site model	VOC	Volatile organic compound
LEL	Lower explosive limit	VRSC	Vibro-replacement stone columns
LMRL	Lower method reporting limit	VSC	Vibro-stone columns
LNAPL	Light non-aqueous phase liquid (petrol, diesel, kerosene)	WHO	World Health Organisation
MCV	Moisture condition value	WRAP	Waste and Resources Action Programme

		I	T	
MIBK	Methyl isobutyl ketone	WTE	Water table elevation	
m	Metres	ppm	Parts per million	
km	Kilometres	mg/m³	Milligram per metre cubed	
% v/v	Percent volume in air	m bgl	Metres below ground level	
mb	Millibars (atmospheric pressure)	m bcl	Metre below cover level	
l/hr	Litres per hour	mAOD	Metres above ordnance datum (sea level)	
μg/l	Micrograms per litre (parts per billion)	kN/m²	Kilonewtons per metre squared	
ppb	Parts per billion	μm	Micrometre	
mg/kg	Milligrams per kilogram (parts per million)	SSRT	Site Specific Remediation Target	
PSD	Particle Size Distribution	DD	Dry Density	
CL:AIRE	Contaminated Land: Applications in Real Environments	Мс	Moisture Content	
ρ	Bulk Density	GPR	Ground Penetrating Radar	
NDP	Nuclear Density Probe	FFL	Finished Floor Level	
LEL	Lower Explosive Limit	UKWIR	UK Water Industry Research	
CIRIA	Construction Industry Research and Information Association	LOD	Limit of Detection	

APPENDIX III LETTERS

E₃P

Taylor Road Trafford Park Urmston Manchester M41 7J0

Manchester | London | Edinburgh

info@E3P.co.uk

Ref: 14-266 V1 Date: 2nd March 2021

Philip Morgan

Alder Hey Children's Hospital

By Email

Dear Phillip,

COVER SYSTEM VALIDATION SPRINGFIELD PARK – PHASE 1 ALDER HEY CHILDRENS HOSPITAL

An E3P engineer attended the above site to validate the thickness of the cover system that had been placed within the public park landscaped area of Springfield Park Phase 1 at locations 1-13 at Alder Hey Children's Hospital.

In total 13No. hand excavated trial pits were advanced with the resulting strata detailed to the rear of this letter. Drawing 14-266-005 identified each location within Phase 1 of Springfield Park.

All trial pits were completed to highlight the required cover system of 600mm (150mm topsoil and 450mm subsoil).

E3P can confirm that our independent validation demonstrates that all areas of the landscaped areas have been installed with 150mm of certified topsoil and at least 450mm subsoil above a geotextile layer in accordance with the NHBC requirements for a site of this nature.

TOPSOIL

E3P attended site between September 2020 and February 2021 to obtain samples of the stockpiled topsoil deposits which were analysed in accordance with the E3P Remediation Strategy. Chemical analysis confirmed that these topsoil deposits were chemically suitable for use within the proposed landscaping areas.

Chemical analysis results are included within lab reports 20-30896-1, 20-39281-1 and 21-56022-1 (attached to this letter).

SUBSOIL

E3P attended site between August 2020 and February 2021 to obtain subsoil samples which were analysed in accordance with the E3P Remediation Strategy. Chemical analysis confirmed that these subsoil deposits were chemically suitable for use within the proposed landscaping areas.

Chemical analysis results are included within lab reports 20-27770-2, 20-32789-1, 20-39281-1, 21-56022-1 and 21-56313-1 (attached to this letter)

Cover system validation photographs are enclosed within this letter.

I trust this information is satisfactory to your requirements, and should I be able to be of any further assistance, please do not hesitate to contact me.

Yours sincerely,

For and on behalf of E3P Ltd

Elizabeth Fearn Geo-Environmental Consultant

EFearn

Chemical Laboratory Analysis

Analysis for topsoil and subsoil undertaken by I2 Analytical Laboratory using UKAS accredited methods where applicable.

Chemical analysis suite comprises heavy metals, sulphates, phenols, speciated Polycylic Aromatic Hydrocarbons (PAHs), speciated and total Petroleum Hydrocarbons (TPH) and asbestos.

Sampling frequency in accordance with the agreed Remediation Strategy. Laboratory analysis certificates attached to this validation certificate.

	Topsoil	Subsoil
Chemical analysis confirmed materials suitable?	Pass	Pass
Further Comments	N/A	N/A

Location No: 1				
Depth of Strata (m bgl)	0.00-0.15		Validated TOPSOIL	
Jopan of Guata (111 Jg.)	0.15-0.60		Validated SUBSOIL	
Depth of Cover System Mater	ials	Depth of Cove	r System Materials	
Depth of Cover System at Gro	ound Level	Depth of Cove	er System in Relatio	n to Plot

Location No: 2				
Depth of Strata (m bgl)	0.00-0.15		Validated TOPSOIL	
Dopuir or Guata (iii Dgi)	0.15-0.60		Validated SUBSOIL	
Depth of Cover System Materi	als	Depth of Cove	er System Materials	
			0/	
			06	
			04	
Depth of Cover System at Gro	und Level	Depth of Cove	er System in Relation	to Plot
				The state of the s
	<u>1</u>		The state of the s	

March 2021				
Location No: 3				
Donth of Ctrata (m. hal)	0.00-0.15		Validated TOPSOIL	
Depth of Strata (m bgl)	0.15-0.60		Validated SUBSOIL	
Depth of Cover System Materi	ials	Depth of Cove	er System Materials	
06 1.5				
Depth of Cover System at Gro	und Level	Depth of Cove	er System in Relation to Ple	ot
	08			
MARK.	and the second			

Location No: 4			
Depth of Strata (m bgl)	0.00-0.15		Validated TOPSOIL
pepul of offata (III bgi)	0.15-0.60		Validated SUBSOIL
Depth of Cover System Mater	ials	Depth of Cove	r System Materials
Depth of Cover System at Gro	und Level	Depth of Cove	er System in Relation to Plot

Location No: 5					
Depth of Strata (m bgl)	0.00-0.15		Validated TOP	SOIL	
Depth of Strata (III bgi)	0.15-0.60		Validated SUB	SOIL	
Depth of Cover System Mater	ials	Depth of Cove	epth of Cover System Materials		
			0 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Depth of Cover System at Gro	und Level	Depth of Cove	er System in Re	lation to Plot	

Location No: 6			
	0.00-0.15		Validated TOPSOIL
Depth of Strata (m bgl)			
	0.15-0.60		Validated SUBSOIL
Donth of Cover System Mate	riolo	Donth of Cour	yr Cyatam Matariala
Depth of Cover System Mate	liais	Deptil of Cove	r System Materials
Depth of Cover System at Gre	ound Level	Depth of Cove	er System in Relation to Plot

Location No: 7				
Depth of Strata (m bgl)	0.00-0.15		Validated TOPSOIL	
beput of cutata (iii bgi)	0.15-0.60		Validated SUBSOIL	
Depth of Cover System Materi	ials	Depth of Cover System Materials		
			06	
			E of	
Depth of Cover System at Gro	und Level	Depth of Cove	er System in Relation	n to Plot
A CONTRACTOR OF THE PARTY OF TH	The state of the s			

Location No: 8	
0.00-0.15 Depth of Strata (m bgl)	Validated TOPSOIL
0.15-0.60	Validated SUBSOIL
Depth of Cover System Materials	Depth of Cover System Materials
Depth of Cover System at Ground Level	Depth of Cover System in Relation to Plot


Location No: 9				
Depth of Strata (m bgl)	0.00-0.15		Validated TOPSOIL	
bopui of ottata (11 bgt)	0.15-0.60		Validated SUBSOIL	
Depth of Cover System Mater	ials	Depth of Cover System Materials		
			07.0	
E			L. Comment	
13.00				
E			6	
			65	
			量為	L
South to			Samuel and	
Depth of Cover System at Gro	ound Level	Depth of Cove	er System in Relation	to Plot
ALL WAR	ر ۱۸ العالمة	W. L. V.		Manuter in
We to the second		MIT V		
	u de la companya de l	We promi		
10 2 A Sec. (22.40)	E i			- A VOLUME
~ · · · ·			i i	
70				
	The Residence			
Control Control				

Location No: 10				
Depth of Strata (m bgl)	0.00-0.15		Validated TOPSOIL	
Depui of Guata (in bgi)	0.15-0.60		Validated SUBSOIL	
Depth of Cover System Mate	rials	Depth of Cove	er System Materials	
Depth of Cover System at Gr	ound Level	Depth of Cove	er System in Relation to Plot	

Location No: 11					
	0.00-0.15		Validated TOPSOI	L	
Depth of Strata (m bgl)					
, ,,	0.15-0.60		Validated SUBSOI	L	
Don't story of the time	 	Don't CO		_	
Depth of Cover System Mater	rials	Depth of Cove	Depth of Cover System Materials		
		21.00			
	基本 " 新发力"				
			AU THE		
19			07.5		
17					
e de la companya de l					
4				* *	
	î		En4		
15		XXX and A	E14		
E TOTAL E			de les		
				- Charles of the	
TO Marine W.					
		Patron !	was the		
	W-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
Depth of Cover System at Gro	ound Level	Depth of Cove	er System in Relatio	on to Plot	
	14	- AL -			
* -	193 9			1.74	
	i i				
		Company of the state of the sta			
		The state of the state of			
	En			3.5	
	n n		and from the	/	
				/-	
	100				
				/	
			E STATE OF THE STA		
10 00000000000000000000000000000000000					

Location No: 12				
Depth of Strata (m bgl)		Validated TOPSOIL		
0.15-0.60		Validated SUBSOIL		
Depth of Cover System Materials	Depth of Cove	of Cover System Materials		
		07		
Depth of Cover System at Ground Level	Depth of Cove	r System in Relation to Plot		

Widicii 2021				
Location No: 13				
Depth of Strata (m bgl)	0.00-0.15		Validated TOPSOIL	
Depuir or otrata (111 bgr)	0.15-0.60		Validated SUBSOIL	
Depth of Cover System Materi	ials	Depth of Cove	r System Materials	
Depth of Cover System at Gro		Depth of Cove	er System in Relation to	o Plat
		West and seems		1 1 - A 1 S
			The second of th	

APPENDIX IV CHEMICAL TESTING RESULTS

Stephanie Cox

e3p Taylor Road Urmston Manchester M41 7JQ

e: steph@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

01/09/2020

Analytical Report Number: 20-27770

Replaces Analytical Report Number: 20-27770, issue no. 1

Client references/information amended.

Project / Site name: Alder Hey Samples received on: 28/08/2020

Your job number: 14-266 Samples instructed on/

Analysis started on:

Your order number: Analysis completed by: 08/09/2020

Report Issue Number: 2 **Report issued on:** 15/09/2020

Samples Analysed: 3 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-27770 Project / Site name: Alder Hey

Lab Sample Number				1609087	1609088	1609089
Sample Reference				SS101	SS102	SS103
Sample Number Depth (m) Date Sampled					None Supplied	None Supplied
					None Supplied	None Supplied
					27/08/2020	27/08/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content				12	13	11
	% ka	N/A	NONE	0.7	0.75	0.76
Total mass of sample received	kg	0.001	NONE	0.7	0.75	0.76
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	9.1	9.4	9.6
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	1200	1000	1700
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	550	430	850
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.27	0.21	0.42
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	273	213	423
Sulphide	mg/kg	1	MCERTS	3	8.4	13
Total Sulphur	mg/kg	50	MCERTS	430	370	600
Table 18 control						
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Total Frictions (mononyune)	ilig/kg	1	PICERTS	V 1.0	< 1.0	V 1.0
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.94	0.62	0.83
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.2
Fluoranthene	mg/kg	0.05	MCERTS	1.2	0.86	1.2
Pyrene	mg/kg	0.05	MCERTS	1.4	0.88	1.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.63	0.44	0.62
Chrysene Renze (h) fluorenth and	mg/kg	0.05	MCERTS	0.5	0.38	0.56
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.56	0.42	0.71
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.39 0.58	0.24 0.4	0.27 0.63
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05	< 0.05	0.63
Dibenz(a,h)anthracene	mg/kg	0.05		< 0.05 < 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	1	MCERTS	< 0.05	< 0.05	0.32
<u>венго(унг)регугене</u>	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.32
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	6.21	4.24	6.85

Analytical Report Number: 20-27770 Project / Site name: Alder Hey

Lab Sample Number				1609087	1609088	1609089
Sample Reference				SS101	SS102	SS103
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)	None Supplied	None Supplied	None Supplied			
Date Sampled	27/08/2020	27/08/2020	27/08/2020			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.4	4.6	6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	12	11	15
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	9.7	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	42	47	46
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.9	8.8	11
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	43	38	52
Petroleum Hydrocarbons						
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	16
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	37
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	< 10	55

Analytical Report Number : 20-27770 Project / Site name: Alder Hey

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1609087	SS101	None Supplied	None Supplied	Brown clay and sand with gravel.
1609088	SS102	None Supplied	None Supplied	Brown clay and sand with gravel.
1609089	SS103	None Supplied	None Supplied	Brown clay and sand with gravel.

Analytical Report Number: 20-27770 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Elizabeth Fearn

e3p Taylor Road Urmston Manchester M41 7JQ

e: efearn@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

18/09/2020

Analytical Report Number: 20-30896

Project / Site name: Alder Hey Samples received on: 18/09/2020

Your job number: 14266 Samples instructed on/

Analysis started on:

Your order number: 14266-JN-B Analysis completed by: 25/09/2020

Report Issue Number: 1 **Report issued on:** 25/09/2020

Samples Analysed: 3 soil samples

Signed: M. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

 $Accredited \ tests \ are \ defined \ within \ the \ report, \ opinions \ and \ interpretations \ expressed \ herein \ are \ outside \ the \ scope \ of \ accreditation.$

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lah Cample Number				1624275	1624276	1624277
Lab Sample Number	TS101	TS102	TS103			
Sample Reference						
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied
Date Sampled Time Taken				Deviating	Deviating	Deviating
Time Taken	1	1	1 .	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	25	23	24
Total mass of sample received	kg	0.001	NONE	0.41	0.43	0.45
·						
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	7	7.1	7.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	590	630	540
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	160	150	160
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.082	0.074	0.078
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	81.9	73.5	78.2
Sulphide	mg/kg	1	MCERTS	3.3	2.4	3
Total Sulphur	mg/kg	50	MCERTS	880	980	1000
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.69	0.47	0.47
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.87	0.8	0.87
Pyrene	mg/kg	0.05	MCERTS	0.86	0.78	0.89
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.54 0.51	0.49 0.39	0.46 0.51
Chrysene Benzo(b)fluoranthene	mg/kg	0.05 0.05	MCERTS	0.59	0.39	0.51
* *	mg/kg	0.05	MCERTS	0.39	0.44	0.31
Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	0.36	0.17	0.25
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.36	0.43	0.44
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.31	0.29	0.3
Compensation of the control of the c	9				V.=.	
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	5.15	4.54	4.94
Heavy Metals / Metalloids	ilig/kg	0.0	PICEICIS	3.13	1.51	1.51
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.1	8	8.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (agua regia extractable)	mg/kg	1	MCERTS	13	13	13
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	25	28
	mg/kg	1	MCERTS	58	55	95
Lead (aqua regia extractable)						
	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3 11	< 0.3 9.9	< 0.3 10
Mercury (aqua regia extractable)						

Lab Sample Number	1624275	1624276	1624277			
Sample Reference				TS101	TS102	TS103
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied
Date Sampled	Deviating	Deviating	Deviating			
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	1.6	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	35	27	24
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	37	30	26

Analytical Report Number : 20-30896 Project / Site name: Alder Hey

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1624275	TS101	None Supplied	None Supplied	Brown loam with gravel and vegetation.
1624276	TS102	None Supplied	None Supplied	Brown loam with gravel and vegetation.
1624277	TS103	None Supplied	None Supplied	Brown loam with gravel and vegetation.

Analytical Report Number: 20-30896 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample Deviation Report

Analytical Report Number : 20-30896 Project / Site name: Alder Hey

Sample ID	Other ID		•	Sample Deviation	Test Name	Test Ref	Test Deviation
TS101	None Supplied	S	1624275	a	None Supplied	None Supplied	None Supplied
TS102	None Supplied	S	1624276	a	None Supplied	None Supplied	None Supplied
TS103	None Supplied	S	1624277	a	None Supplied	None Supplied	None Supplied

Mike Whittaker

e3p Taylor Road Urmston Manchester M41 7JQ

e: mwhittaker@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-32789

Project / Site name: Alder Hey Samples received on: 29/09/2020

Your job number: 14-266 Samples instructed on/ 29/09/2020

Analysis started on:

Your order number: 14-266 MW C **Analysis completed by:** 07/10/2020

Report Issue Number: 1 **Report issued on:** 07/10/2020

Samples Analysed: 11 soil samples

Dawradio

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

 $Accredited \ tests \ are \ defined \ within \ the \ report, \ opinions \ and \ interpretations \ expressed \ herein \ are \ outside \ the \ scope \ of \ accreditation.$

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Sample Reference SS104 SS105 SS106 SS107	Lab Sample Number				1634591	1634592	1634593	1634594
Sample	•							
None Suppled None	•							
Date Sampled	•							None Supplied
Some Content								
Some Contents	Time Taken							None Supplied
Visiture Content	•	Units	Limit of detecti on	Accredi tation Status				
Visiture Content	Stone Content	0/0	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Pubestos in Soli								
Part		1						
Centeral Inorganics								
Price Pric	Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
Total Cyanide	General Inorganics							
Total Sulphate as SOH	pH - Automated	pH Units	N/A	MCERTS	8.8	9.3	9.2	9
Water Soluble Sulphate as SOA 16hr extraction (2:1) mg/kg 2.5 MCERTS 400 300 500 460 Water Soluble SOA 16hr extraction (2:1 Leachate Equivalent) gl 0.00125 MCERTS 0.2 0.15 0.25 0.23 Water Soluble SOA 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 2.03 149 2.51 2.31 Solphide mg/l 1.0 MCERTS 2.03 149 2.51 2.31 Total Phenols mg/l 1.0 MCERTS < 1.0	Total Cyanide	mg/kg	1	MCERTS	< 1		< 1	< 1
Water Soluble SO4 16fir extraction (2:1 Leachate Equivalent) g1 0.00125 MCERTS 0.2 0.15 0.25 0.23 Water Soluble SO4 16fir extraction (2:1 Leachate Equivalent) mg/ng 1.28 MCERTS 2.03 149 251 231 Suphtide mg/ng 1 MCERTS < 1.0		mg/kg						
Mater Soluble SOA 16hr extraction (2:1 Leachate Equivalent)		1						
Sulphide	,	1						
Total Phenols mg/kg 50 MCERTS 330 250 390 430 Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	,							
Total Phenols Total Phenols (monthydric) Maghig 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	,	1						
Total Phenols (monohydric) mg/kg 1 NCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Total Sulphur	mg/kg	50	MCERTS	330	250	390	430
Speciated PAHS	Total Phenois							
Naphthalene	Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	Speciated PAHs							
Acenaphthylene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Acenaphthene mg/kg 0.05 MCERTS < 0.05 0.05 < 0.05 < 0.05 Acenaphthene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 MCERTS < 0.05 < 0.05 MCERTS < 0.05 MCERTS		ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Accenaphthene mg/kg 0.05 MCERTS < 0.05 0.29 0.4 0.24 Fluorene mg/kg 0.05 MCERTS < 0.05	•							
Fluorene			0.05	MCERTS	< 0.05	0.29	0.4	0.24
Phenanthrene			0.05		< 0.05	< 0.05	0.23	< 0.05
Fluoranthene	Phenanthrene		0.05	MCERTS	0.39	1.6	1.3	2.2
Pyrene	Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	Fluoranthene	mg/kg	0.05	MCERTS	0.54	1.2	1.3	2.6
Chrysene	Pyrene	mg/kg	0.05	MCERTS	0.59	1.3	1.2	2.5
Benzo(b)fluoranthene	Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.32	0.61	0.54	1.1
Benzo(k)fluoranthene	Chrysene	mg/kg	0.05	MCERTS	0.38	0.61	0.73	0.98
Benzo(a)pyrene	Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.47	0.6	1
Indeno(1,2,3-cd)pyrene	Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.29	0.3	0.46
Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 < 0.05 Benzo(ghi)perylene mg/kg 0.05 MCERTS < 0.05	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	mg/kg	0.05	MCERTS				
Benzo(ghi)perylene		mg/kg	0.05					
Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 2.22 6.73 7.77 13 Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 5.3 6.1 6.1 5.8 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS <0.2								
Material EPA-16 PAHs Mg/kg 0.8 MCERTS 2.22 6.73 7.77 13	Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.36	0.54
Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 5.3 6.1 6.1 5.8 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2		1					<u> </u>	
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 5.3 6.1 6.1 5.8 Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2	Speciated Total EPA-16 PAHS	mg/kg	0.8	MCERTS	2.22	6.73	7.77	13
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.3 < 0.3 < 0.3	· · ·	•						•
Chromium (hexavalent) mg/kg 4 MCERTS < 4.0 < 4.0 < 4.0 Chromium (aqua regia extractable) mg/kg 1 MCERTS 11 9.9 12 13 Copper (aqua regia extractable) mg/kg 1 MCERTS 9 11 12 12 12 <td< td=""><td>, , , ,</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	, , , ,	1						
Chromium (aqua regia extractable) mg/kg 1 MCERTS 11 9.9 12 13 Copper (aqua regia extractable) mg/kg 1 MCERTS 9 11	,	1						
Copper (aqua regia extractable) mg/kg 1 MCERTS 9 11 11 11 11 Lead (aqua regia extractable) mg/kg 1 MCERTS 42 44 44 58 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	, ,	1						
Lead (aqua regia extractable) mg/kg 1 MCERTS 42 44 44 58 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	,	1						
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3 < 0.3 < 0.3 < 0.3 Nickel (aqua regia extractable) mg/kg 1 MCERTS 7.2 8.9 8.6 8.5 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0	,, , , , ,	1						
Nickel (aqua regia extractable) mg/kg 1 MCERTS 7.2 8.9 8.6 8.5 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0	(1 3)	1						
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <								
Zinc (aqua regia extractable) mg/kg 1 MCERTS 37 45 43 44 Petroleum Hydrocarbons								
Petroleum Hydrocarbons								
	Enire (aqua regia extractable)	ilig/kg	1	MICEKIS	3/	CF	CF	77
TPH (C5 - C6) mg/kg 1 NONE < 1.0 < 1.0 < 1.0	Petroleum Hydrocarbons							
	TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample Number	1634591	1634592	1634593	1634594			
Sample Reference	SS104	SS105	SS106	SS107			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				28/09/2020	28/09/2020	28/09/2020	28/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	10
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	23
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	35

Lab Sample Number				1634595	1634596	1634597	1634598
Sample Reference				SS108	SS109	SS110	SS111
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				28/09/2020	28/09/2020	28/09/2020	28/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
	Τ -	g E	S t >	попе заррнеа	топе зарряеа	попе заррпеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
(Suit Allalysis)	ห	<u> </u>	on ibé				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.1	8.1	11	13
Total mass of sample received	kg	0.001	NONE	0.55	0.49	0.5	0.51
		1					
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics				0.0	0.6	0.0	
pH - Automated	pH Units	N/A	MCERTS	9.3	9.6	9.3	9.3
Total Cyanide	mg/kg	1 50	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	1000	1400	920	1300
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	340	760	520	600
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.17	0.38	0.26	0.3
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	170 3.2	378	261	302 5.4
Sulphide Total Sulphur	mg/kg mg/kg	1 50	MCERTS MCERTS	3.2	18 530	3.3 320	5.4 440
Total Sulphul	ilig/kg	50	MICERIS	330	530	320	440
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (mononyunc)	ilig/kg	1	MICERIS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	malka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.7	0.53	1.3	0.91
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.25	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.8	0.79	1.9	1.2
Pyrene	mg/kg	0.05	MCERTS	0.83	0.87	1.9	1.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.46	0.44	1	0.7
Chrysene	mg/kg	0.05	MCERTS	0.43	0.37	0.8	0.6
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.43	0.4	0.88	0.73
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.23	0.21	0.44	0.35
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.4	0.41	0.93	0.7
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.21	< 0.05	0.4	0.33
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.28	< 0.05	0.45	0.4
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	4.77	4.02	10.4	7.19
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.3	6.7	6.1	5.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	12	11	11	11
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	10	8.9	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	52	55	49	58
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	8.5	6.9	9	8.8
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	50	34	41	44
But the cuttoday of the co							
Petroleum Hydrocarbons	1	1					
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0

Lab Sample Number				1634595	1634596	1634597	1634598
Sample Reference				SS108	SS109	SS110	SS111
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		None Supplied	None Supplied	None Supplied	None Supplied		
Date Sampled	28/09/2020	28/09/2020	28/09/2020	28/09/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	7.3	11	3.6	14
TPH (C21 - C35)	mg/kg	1	MCERTS	25	36	22	62
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	11
TPH Total C5 - C40	mg/kg	10	MCERTS	34	50	27	89

Lah Cample Number			1	1634599	1634600	1634601
Lab Sample Number				SS112	SS113	SS114
Sample Reference						
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied
Date Sampled				28/09/2020	28/09/2020	28/09/2020
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accredi tation Status			
		_				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.7	11	8.6
Total mass of sample received	kg	0.001	NONE	0.5	0.51	0.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
			<u>. </u>			
General Inorganics	-1111-2-	N/A	MCERTS	0.4	0.3	0.0
pH - Automated	pH Units	N/A	MCERTS	9.4	9.3	8.9
Total Cyanide Total Sulphoto as SO4	mg/kg	1	MCERTS	< 1 670	< 1	< 1 930
Total Sulphate as SO4	mg/kg	50	MCERTS		940	
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	200	440	640
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.1	0.22	0.32
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	102	221	319
Sulphide	mg/kg	1	MCERTS	9.4	2.4	3.1
Total Sulphur	mg/kg	50	MCERTS	220	330	360
Total Phenols						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Speciated PAHs						
- Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.57	0.22
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.34	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.31	2.8	1.2
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.61	0.28
Fluoranthene	mg/kg	0.05	MCERTS	0.51	4.8	1.8
Pyrene	1	0.05	MCERTS	0.52	4.6	1.6
•	mg/kg			0.3	2	0.85
Benzo(a)anthracene	mg/kg	0.05	MCERTS			
Chrysene	mg/kg	0.05	MCERTS	0.28	1.5	0.6
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.8	0.73
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.76	0.38
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.6	0.8
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.68	0.36
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.86	0.44
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	1.92	22.9	9.34
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.2	5	5.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	7.8	11	13
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.6	9.7	8.7
Lead (aqua regia extractable)	mg/kg	1	MCERTS	44	55	32
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	5.6	8.5	8.4
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	28	43	30
Potroloum Hudrocarbons						
Petroleum Hydrocarbons IPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0
(== 50)	9/ 19			- 1.0	. 1.0	- 1.0

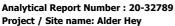
Lab Sample Number			·		1634599	1634600	1634601
Sample Reference					SS112	SS113	SS114
Sample Number					None Supplied	None Supplied	None Supplied
Depth (m)					None Supplied	None Supplied	None Supplied
Date Sampled	28/09/2020	28/09/2020	28/09/2020				
Time Taken	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)		eti uU	Limit of detecti	Accredi tation Status			
TPH (C6 - C8)	mg	g/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg	g/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg	g/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg	g/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg	g/kg	1	MCERTS	6	35	8.7
TPH (C21 - C35)	mg	g/kg	1	MCERTS	25	21	71
TPH (C35 - C40)	mg	g/kg	10	MCERTS	< 10	< 10	13
TPH Total C5 - C40	mg	g/kg	10	MCERTS	33	59	95

Analytical Report Number : 20-32789 Project / Site name: Alder Hey

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1634591	SS104	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634592	SS105	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634593	SS106	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634594	SS107	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634595	SS108	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634596	SS109	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634597	SS110	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634598	SS111	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634599	SS112	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634600	SS113	None Supplied	None Supplied	Light brown clay and sand with gravel.
1634601	SS114	None Supplied	None Supplied	Light brown clay and sand with gravel.


Analytical Report Number : 20-32789 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Elizabeth Fearn

e3p Taylor Road Urmston Manchester M41 7JQ

e: efearn@e3p.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-39281

Project / Site name: Alder Hey Samples received on: 03/11/2020

Your job number: 14-266 Samples instructed on/ 03/11/2020

Analysis started on:

Your order number: 14266-EF-D Analysis completed by: 10/11/2020

Report issued on: **Report Issue Number:** 10/11/2020

Samples Analysed: 15 soil samples

Signed: M. Cherwinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1671970	1671971	1671972	1671973
Sample Reference				TS104	TS105	TS106	TS107
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				02/11/2020	02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
14.00	1		>	. tone supplied	rione supplied	топе варрива	толе варрива
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	41	40	41	35
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4
	•	•					
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-
				<u>.</u>			
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	6.7	6.9	6.8	6.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	420	520	510	440
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.14	0.074	0.15	0.057
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	280	150	290	110
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	141	74.2	147	57.1
Sulphide	mg/kg	1	MCERTS	< 1.0	3	1.7	< 1.0
Total Sulphur	mg/kg	50	MCERTS	1100	860	910	870
·	•	<u>.</u>					
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
	•	•					
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.8	1.2	0.62	0.57
Anthracene	mg/kg	0.05	MCERTS	0.22	0.37	0.17	0.34
Fluoranthene	mg/kg	0.05	MCERTS	1.1	2	0.89	1.1
Pyrene	mg/kg	0.05	MCERTS	0.9	1.8	0.75	1
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.61	1	0.48	0.62
Chrysene	mg/kg	0.05	MCERTS	0.38	0.88	0.42	0.54
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.57	0.8	0.4	0.58
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.21	0.54	0.31	0.36
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.49	0.84	0.46	0.58
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.23	0.33	< 0.05	0.26
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.27	0.39	< 0.05	0.3
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	5.73	10.1	4.5	6.26

Lab Sample Number				1671970	1671971	1671972	1671973
Sample Reference				TS104	TS105	TS106	TS107
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				02/11/2020	02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids	-	=	-				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.9	6.6	6.2	6.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	9.5	9.7	9.2	8.9
Copper (aqua regia extractable)	mg/kg	1	MCERTS	21	18	18	16
Lead (aqua regia extractable)	mg/kg	1	MCERTS	44	33	29	29
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.4	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	8.7	8.2	8.2	8
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	36	32	30	30
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	26	29	24	21
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	28	31	26	23

Lab Sample Number				1671974	1671975	1671976	1671977
Sample Reference				TS108	TS109	SS114	SS115
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				02/11/2020	02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
14.00	1	I	>	топо варрноа	Hone Supplied	Horic Supplied	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	33	35	14	13
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	6.8	7.7	9.3	9.2
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	380	380	1200	690
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.063	0.079	0.19	0.084
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	130	160	370	170
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	62.9	78.9	186	83.9
Sulphide	mg/kg	1	MCERTS	1.3	1.8	12	15
Total Sulphur	mg/kg	50	MCERTS	790	710	420	300
	•	•				•	
Total Phenois			T				
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.24	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.38	0.3
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.24	0.23
Phenanthrene	mg/kg	0.05	MCERTS	0.76	0.78	1.7	1.4
Anthracene	mg/kg	0.05	MCERTS	0.16	0.21	0.31	0.28
Fluoranthene	mg/kg	0.05	MCERTS	1.3	1.3	2	2.9
Pyrene	mg/kg	0.05	MCERTS	1.2	1.2	2.1	2.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.69	0.68	1.1	1.7
Chrysene	mg/kg	0.05	MCERTS	0.6	0.59	0.93	1.3
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.62	0.64	1.2	1.8
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.38	0.4	0.51	0.77
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.66	0.68	1.1	1.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.32	0.28	0.42	0.65
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.32	0.33	0.48	0.83
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	7.01	7.04	12.6	16.4

Lab Sample Number				1671974	1671975	1671976	1671977
Sample Reference				TS108	TS109	SS114	SS115
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				02/11/2020	02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids					-	=	=
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.5	6.1	8.2	7.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	10	8.1	17	13
Copper (aqua regia extractable)	mg/kg	1	MCERTS	21	16	31	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	36	27	48	55
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.6	7.1	6.9	6.9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	35	30	55	49
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	7.8
TPH (C16 - C21)	mg/kg	1	MCERTS	4.5	< 1.0	4.9	14
TPH (C21 - C35)	mg/kg	1	MCERTS	31	59	9.4	69
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	38	61	16	93

Lab Sample Number				1671978	1671979	1671980	1671981
Sample Reference				SS116	SS117	SS118	SS119
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				02/11/2020	02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
			>	сарриса			сарриса
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	16	13	15	13
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4	0.4
		•	-			•	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Amosite	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	< 0.001	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	9.4	9.3	9.4	9.3
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	830	720	1100	750
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.21	0.12	0.26	0.12
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	420	240	520	250
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	208	120	261	124
Sulphide	mg/kg	1	MCERTS	6.3	37	4.2	15
Total Sulphur	mg/kg	50	MCERTS	370	350	450	450
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.58	< 0.05	0.46
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.22	1.3	0.26	0.59
Fluorene	mg/kg	0.05	MCERTS	0.15	0.7	0.2	0.4
Phenanthrene	mg/kg	0.05	MCERTS	0.73	3.4	1.1	1.9
Anthracene	mg/kg	0.05	MCERTS	0.14	0.53	0.16	0.35
Fluoranthene	mg/kg	0.05	MCERTS	1	3.8	1.3	2.7
Pyrene Penga(a)anthracena	mg/kg	0.05	MCERTS	1.1	4.1	1.3	3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.7	2.3	0.7	1.7
Chrysene Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.58 0.75	2.6	0.63	1.4 2
Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.75		0.71	0.89
Benzo(a)pyrene	mg/kg	0.05 0.05	MCERTS MCERTS	0.63	1.1 2.2	0.32 0.6	1.8
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.83	< 0.05	0.69
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05 1.1	< 0.05	0.84
penzo(grii/peryiene	mg/kg	0.05	MCERTS	< 0.03	1.1	₹ 0.03	0.04
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	6.37	26.6	7.3	18.6
Speciated Total ETA 10 TAIS	1119/159	0.0	PICEINIS	0.57	20.0	7.5	10.0

Lab Sample Number				1671978	1671979	1671980	1671981
Sample Reference				SS116	SS117	SS118	SS119
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				02/11/2020	02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids					-	-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8	7.7	8.8	7.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	13	13	12	15
Copper (aqua regia extractable)	mg/kg	1	MCERTS	16	16	12	17
Lead (aqua regia extractable)	mg/kg	1	MCERTS	53	60	52	62
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.3	0.5	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.6	8.3	7.1	7.8
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	42	54	43	53
Petroleum Hydrocarbons							
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	6.8	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	6	13	3.7	7.2
TPH (C21 - C35)	mg/kg	1	MCERTS	22	39	19	29
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	30	61	25	38

Lab Sample Number				1671982	1671983	1671984
Sample Reference		SS120	SS121	SS122		
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied
Date Sampled				02/11/2020	02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied
14.6.	1		>	. tone cappinea	rione supplied	топо виррпои
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	15	14	13
Total mass of sample received	kg	0.001	NONE	0.4	0.4	0.4
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-
Consul Insuranies						
General Inorganics DH - Automated	nU Unito	NI/A	MCEDIC	9.5	9.3	9.3
Total Cyanide	pH Units	N/A	MCERTS MCERTS	9.5 < 1	9.5 < 1	9.5 < 1
Total Sulphate as SO4	mg/kg	1 50	MCERTS	760	800	690
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg g/l	0.00125	MCERTS	0.2	0.11	0.11
Water Soluble SO4 (2:1 Leach: Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	390	220	230
Water Soluble SO4 (2:1 Leach. Equiv.) The extraction	mg/l	1.25	MCERTS	195	108	115
Sulphide	mg/kg	1.23	MCERTS	5.3	20	6.8
Total Sulphur	mg/kg	50	MCERTS	370	370	330
Total Suprial	9/9	50	HOLINIO	5, 5	5.0	330
Total Phenois						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
· · · · ·						
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.32	0.31	0.2
Fluorene	mg/kg	0.05	MCERTS	0.29	0.21	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	2	1.3	1
Anthracene	mg/kg	0.05	MCERTS	0.47	0.24	0.17
Fluoranthene	mg/kg	0.05	MCERTS	2.2	2.2	1.7
Pyrene	mg/kg	0.05	MCERTS	2.2	2.3	1.9
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.1	1.6	1.2
Chrysene	mg/kg	0.05	MCERTS	0.95	1.2	0.93
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1	1.9	1.4
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.44	0.79	0.58
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.88	1.6	1.3
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.42	0.63	0.51
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.4	0.73	0.55
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	12.8	15	11.4

Lab Sample Number		1671982	1671983	1671984		
Sample Reference				SS120	SS121	SS122
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)	None Supplied	None Supplied	None Supplied			
Date Sampled	02/11/2020	02/11/2020	02/11/2020			
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids					-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.8	8.1	6.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	12	15	13
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.9	15	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	44	58	57
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.2	8.7	8.7
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.2	< 1.0	1.1
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	38	56	50
Petroleum Hydrocarbons						
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	14	6.4	16
TPH (C21 - C35)	mg/kg	1	MCERTS	21	19	38
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	38	27	56

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1671980	SS118		130	Loose Fibres	Amosite	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 20-39281 Project / Site name: Alder Hey

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1671970	TS104	None Supplied	None Supplied	Brown clay and loam with gravel and vegetation.
1671971	TS105	None Supplied	None Supplied	Brown clay and loam with gravel and vegetation.
1671972	TS106	None Supplied	None Supplied	Brown clay and loam with gravel and vegetation.
1671973	TS107	None Supplied	None Supplied	Brown clay and loam with gravel and vegetation.
1671974	TS108	None Supplied	None Supplied	Brown clay and loam with gravel and vegetation.
1671975	TS109	None Supplied	None Supplied	Brown clay and loam with gravel and vegetation.
1671976	SS114	None Supplied	None Supplied	Brown clay and sand with gravel.
1671977	SS115	None Supplied	None Supplied	Brown clay and sand with gravel.
1671978	SS116	None Supplied	None Supplied	Brown clay and sand with gravel.
1671979	SS117	None Supplied	None Supplied	Brown clay and sand with gravel.
1671980	SS118	None Supplied	None Supplied	Brown clay and sand with gravel.
1671981	SS119	None Supplied	None Supplied	Brown clay and sand with gravel.
1671982	SS120	None Supplied	None Supplied	Brown clay and sand with gravel.
1671983	SS121	None Supplied	None Supplied	Brown clay and sand with gravel.
1671984	SS122	None Supplied	None Supplied	Brown clay and sand with gravel.

Analytical Report Number : 20-39281 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

Analytical Report Number: 20-39281 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Elizabeth Fearn

e3p Taylor Road Urmston Manchester M41 7JQ

e: efearn@e3p.co.uk

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-56022

Project / Site name: Alder Hey Samples received on: 09/02/2021

Your job number: 14-266 Samples instructed on/ 09/02/2021

Analysis started on:

Analysis completed by: 16/02/2021

Report Issue Number: 1 **Report issued on:** 18/02/2021

Samples Analysed: 5 soil samples

Signed: A. Cherwinska

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting leachates - 2 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

14266-EF-G

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Sample Reference	ab Sample Number						1765759	1765760
Samuela Nicoshau				SS123	SS124	SS125	TS110	TS111
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				08/02/2021	08/02/2021	08/02/2021	08/02/2021	08/02/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	14	15	35	28
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5	0.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	9.4	9.2	9.5	6.7	7.5
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	720	1300	850	580	480
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.14	0.16	0.15	0.17	0.11
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	290	320	300	350	230
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	144	161	148	173	113
Sulphide	mg/kg	1	MCERTS	81	40	56	10	11
Total Sulphur	mg/kg	50	MCERTS	370	390	340	970	720
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (mononyunc)	9/.19	-	TIGENTO	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
•	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Naphthalene Acenaphthylene								
Naphthalene Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 0.58	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05 1.8	< 0.05 < 0.05 < 0.05 0.42	< 0.05 < 0.05 < 0.05 0.28
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 0.58 < 0.05	< 0.05 < 0.05 < 0.05 1.2 < 0.05	< 0.05 < 0.05 < 0.05 1.8 0.29	< 0.05 < 0.05 < 0.05 0.42 < 0.05	< 0.05 < 0.05 < 0.05 0.28 < 0.05
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.58 < 0.05	< 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9	< 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64	< 0.05 < 0.05 < 0.05 0.28 < 0.05 0.47
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 0.58 < 0.05 0.8	< 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4 2.2	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9 2.9	< 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64 0.63	< 0.05 < 0.05 < 0.05 0.28 < 0.05 0.47 0.51
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.58 < 0.05 0.8 0.87	< 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4 2.2 1.2	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9 2.9 1.4	< 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64 0.63	< 0.05 < 0.05 < 0.05 0.28 < 0.05 0.47 0.51
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Genzo(b)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 0.58 < 0.05 0.8 0.87 0.42 0.5	< 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4 2.2 1.2 0.94	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9 2.9 1.4	< 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64 0.63 0.33 0.31	< 0.05 < 0.05 < 0.05 0.28 < 0.05 0.47 0.51 0.31
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Payrene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.58 < 0.05 0.8 0.87 0.42 0.5 0.44	< 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4 2.2 1.2 0.94 1.1	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9 2.9 1.4 1.4	< 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64 0.63 0.33 0.31 0.29	< 0.05 < 0.05 < 0.05 0.28 < 0.05 0.47 0.51 0.31 0.28 0.32
Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.58 < 0.05 0.8 0.87 0.42 0.5 0.44 0.38	< 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4 2.2 1.2 0.94 1.1	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9 2.9 1.4 1.4 1.6 0.68	< 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64 0.63 0.33 0.31 0.29 0.21	< 0.05 < 0.05 < 0.05 0.28 < 0.05 0.47 0.51 0.31 0.28 0.32 0.17
Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 0.58 < 0.05 0.8 0.87 0.42 0.5 0.44 0.38 0.42	< 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4 2.2 1.2 0.94 1.1 0.54 0.85	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9 2.9 1.4 1.4 1.6 0.68 1.2 0.72	< 0.05 < 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64 0.63 0.33 0.31 0.29 0.21 0.33	< 0.05 < 0.05 < 0.05 < 0.05 0.28 < 0.05 0.47 0.51 0.31 0.28 0.32 0.17 0.35
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.58 < 0.05 0.8 0.87 0.42 0.5 0.44 0.38 0.42 0.23	< 0.05 < 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4 2.2 1.2 0.94 1.1 0.54 0.85 0.43	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9 2.9 1.4 1.4 1.6 0.68 1.2	< 0.05 < 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64 0.63 0.33 0.31 0.29 0.21 0.33 < 0.05	<
Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 0.58 < 0.05 0.8 0.87 0.42 0.5 0.44 0.38 0.42 0.23	< 0.05 < 0.05 < 0.05 < 0.05 1.2 < 0.05 2.4 2.2 1.2 0.94 1.1 0.54 0.85 0.43	< 0.05 < 0.05 < 0.05 1.8 0.29 2.9 2.9 1.4 1.4 1.6 0.68 1.2 0.72	< 0.05 < 0.05 < 0.05 < 0.05 0.42 < 0.05 0.64 0.63 0.33 0.31 0.29 0.21 0.33 < 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.28 < 0.05 0.47 0.51 0.31 0.28 0.32 0.17 0.35 < 0.05

Lab Sample Number				1765756	1765757	1765758	1765759	1765760
Sample Reference				SS123	SS124	SS125	TS110	TS111
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				08/02/2021	08/02/2021	08/02/2021	08/02/2021	08/02/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-		-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.9	5.6	6.6	7.1	7.1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	13
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	11	10	9.6	9.4	10
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	17	14	21	18
Lead (aqua regia extractable)	mg/kg	1	MCERTS	34	31	38	130	41
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.1	7	6.8	8.7	10
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	34	34	37	38	37
Petroleum Hydrocarbons								
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	3.4	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	5.1	5.3	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	11	7.1	12	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	25	16	28	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	10	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	60	31	42	< 10	< 10

Analytical Report Number : 21-56022 Project / Site name: Alder Hey

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1765756	SS123	None Supplied	None Supplied	Brown sand with gravel.
1765757	SS124	None Supplied	None Supplied	Brown sand with gravel.
1765758	SS125	None Supplied	None Supplied	Brown sand with gravel.
1765759	TS110	None Supplied	None Supplied	Black sandy clay.
1765760	TS111	None Supplied	None Supplied	Black sandy clay.

Analytical Report Number : 21-56022 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	n in soil Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. In house method based on HSG 248		A001-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.		L080-PL	W	MCERTS
Moisture Content	iontent Moisture content, determined gravimetrically. (30 oC) In house method.		L019-UK/PL	W	NONE
Monohydric phenols in soil	pydric phenols in soil Determination of phenols in soil by extraction with sodium In-house method based on Examination of W hydroxide followed by distillation followed by colorimetry. and Wastewater 20th Edition: Clesceri, Green & Eaton (skalar)		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed In house method. by automated electrometric measurement.		L099-PL	D	MCERTS
lphide in soil Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.		In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	al sulphate (as SO4 in soil) Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES. In house method.		L038-PL	D	MCERTS
ones content of soil Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as Meth % dry weight.		In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	tal Sulphur in soil Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.		L038-PL	D	MCERTS
Total cyanide in soil	I cyanide in soil Determination of total cyanide by distillation followed by colorimetry. In-house methor and Wastewate & Eaton (Skala		L080-PL	W	MCERTS
		In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

Analytical Report Number : 21-56022 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Elizabeth Fearn

e3p Taylor Road Urmston Manchester M41 7JQ

e: efearn@e3p.co.uk

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-56313

Project / Site name: Alder Hey Samples received on: 09/02/2021

Your job number: 14 266 Samples instructed on/ 11/02/2021

Analysis started on:

Analysis completed by: 18/02/2021

Report Issue Number: 1 **Report issued on:** 18/02/2021

Samples Analysed: 1 soil samples

Signed:

Rachel Bradley Deputy Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

14266 FF G

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Environmental Science

Analytical Report Number: 21-56313 Project / Site name: Alder Hey Your Order No: 14266 EF G

Lab Sample Number	1767301			
Sample Reference				SS126
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled	08/02/2021			
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	13
Total mass of sample received	kg	0.001	NONE	0.5

Asbestos in Soil	Type	N/A	ISO 1/025	Not-detected

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.2
Total Cyanide	mg/kg	1	MCERTS	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	560
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.12
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	240
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	121
Sulphide	mg/kg	1	MCERTS	8.5
Total Sulphur	mg/kg	50	MCERTS	280

Total Phenois

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0
----------------------------	-------	---	--------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
•				
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.31
Fluorene	mg/kg	0.05	MCERTS	0.23
Phenanthrene	mg/kg	0.05	MCERTS	2
Anthracene	mg/kg	0.05	MCERTS	0.51
Fluoranthene	mg/kg	0.05	MCERTS	2.5
Pyrene	mg/kg	0.05	MCERTS	2.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.5
Chrysene	mg/kg	0.05	MCERTS	1
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.2
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.54
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.61
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.69

Total PAH

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	10
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	35
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	6.4
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	34

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1

Analytical Report Number: 21-56313 Project / Site name: Alder Hey Your Order No: 14266 EF G

Lab Sample Number	1767301			
Sample Reference	SS126			
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				08/02/2021
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	8.3
TPH (C16 - C21)	mg/kg	1	MCERTS	13
TPH (C21 - C35)	mg/kg	1	MCERTS	27
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	50

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-56313 Project / Site name: Alder Hey

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1767301	SS126	None Supplied	None Supplied	Brown loam with gravel.

Analytical Report Number : 21-56313 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

Analytical Report Number : 21-56313 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------	--

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Elizabeth Fearn

e3p Taylor Road Urmston Manchester M41 7JQ

e: efearn@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-43439

Project / Site name: Alder Hey Samples received on: 24/11/2020

Your job number: 14266 Samples instructed on/ 24/11/2020

Analysis started on:

Your order number: 14266ES E **Analysis completed by:** 01/12/2020

Report Issue Number: 1 **Report issued on:** 01/12/2020

Samples Analysed: 1 soil sample

Signed: A. Calruinska

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-43439 Project / Site name: Alder Hey Your Order No: 14266ES E

Lab Sample Number				1695693	
Sample Reference	Sample Reference			SS123	
Sample Number				None Supplied	
Depth (m)				None Supplied	
Date Sampled		20/11/2020			
Time Taken			None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status		
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 20-43439 Project / Site name: Alder Hey

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Certificate issued to:-

Application No:19F/0916

Date Issued: 12 May 2020

Cullinan Studio Foundry 5 Baldwin Terrace Islington London N1 7RU

P

TOWN AND COUNTRY PLANNING ACT 1990 TOWN AND COUNTRY PLANNING (GENERAL DEVELOPMENT PROCEDURE) ORDER 1995

Location: Royal Liverpool Childrens NHS Trust Alder Hey Hospital, Eaton Road,

West Derby, Liverpool, L12 2AP

Proposal: To redevelop and expand Springfield Park, works to include hard and

soft landscaping, surface water swale (pond) planting and trees, path

network, lighting, seating, boundary and entrance treatments, children's play area, MUGA with lighting, and visitors carpark

Applicant: Royal Liverpool Childrens NHS Trust Alder Hey Hospital

Alder Hey Children's Hospital

Eaton Road West Derby Liverpool L12 2AP

Date Valid: 10/04/2019

In pursuance of its powers under the above-mentioned legislation, the Local Planning Authority on **12 May 2020 GRANTED** planning permission for the above-mentioned development in accordance with your application, subject to the compliance with the conditions specified on the attached schedule, for the reasons stated.

(see attached)

Samantha Campbell

Head of Planning

Liverpool City Council

Cunard Building, Water Street, Liverpool, L3 1AH

T: 0151 233 3021

E: planningandbuildingcontrol@liverpool.gov.uk www.liverpool.gov.uk

SCHEDULE OF CONDITIONS AND REASONS

Condition No	Condition
1	The development hereby permitted shall begin before the expiration of 3 years from the date of this permission.
	REASON: To comply with Section 91 of the Town and Country Planning Act 1990 as amended by Section 51 of the Planning and Compulsory Purchase Act 2004.
2	The development hereby approved shall be carried out in accordance with the following drawings and documents:
	DAS & supporting info "SpringfieldPark_DesignAndAccessStatement_Rev 3 "TM391 R09 Addendum Words "191010_Springfield Park Planning Requirements MUGA_Pond
	Architectural Drawings (appendix 1 of DAS) " AHCC-CUL-ZZ-ZZ-DR-A-0800-Site Location Plan-2 " AHCC-CUL-ZZ-ZZ-DR-A-0801-Existing Park Location Plan-2 " AHCC-CUL-ZZ-ZZ-DR-A-0802-Phasing Plan-2
	Landscape Drawings (appendix 2 of DAS) " TM391 - L00A - Materials & Planting Strategy Key " TM391 - L01C - Landscape General Arrangement - North " TM391 - L02A - Landscape General Arrangement - South " TM391 - L03C - Planting Strategy - North " TM391 - L04A - Planting Strategy - South
	Ecology Report (appendix 3 of DAS) "Extended Phase 1 Habitat Survey & Protected Species Survey / Assessment - Land at Alder Hey, July 2015
	Arboricultural Impact Assessment/Tree Constraints Plans/Tree Retention Removal And Protection Plans (appendix 4 of DAS) "JKK9351 - RPS - Alder Hey Hospital and Springfield Park Arboricultural Impact Assessment, 9th April 2019 "JKK9351 - Figure 01.01, Tree Constraints Plan, RPS "JKK9351 - Figure 01.02, Tree Constraints Plan, RPS "JKK9351 - Figure 01.03, Tree Constraints Plan, RPS "JKK9351 - Figure 01.04, Tree Constraints Plan, RPS JKK9351 - Figure 02.01, Rev 01 - Tree Retention / Removal & Protection Plan, RPS JKK9351 - Figure 02.02 - Tree Retention / Removal & Protection Plan, RPS JKK9351 - Figure 02.03, Rev 01 - Tree Retention / Removal & Protection Plan, RPS JKK9351 - Figure 02.04 - Tree Retention / Removal & Protection Plan, RPS
	Ground Investigation - (appendix 5 of DAS) ESG Baseline desk study on preliminary ground investigation for Alder Hey Hospital,

Liverpool. Report: R3040/BDS, Dec 2013 ESG Factual Report On Ground Investigation for Alder Hey Hospital, Liverpool. Report No R5124-15, November 2015 Flood Risk Assessment (appendix 6 of DAS) 219-134 - Alder Hey Springfield Park FRA & Drainage Strategy RevP01, Ref: AHS-AJP-ZZ-XX-RP-C-3000, The Alan Johnston Partnership LLP, 16.08.19 REASON: For the avoidance of doubt. 3 (a) Development of the pitches shall commence until the following documents have been submitted to and approved in writing by the Local Planning Authority after consultation with Sport England: A detailed assessment of ground conditions carried out by a suitably qualified (i) sports turf consultant (including drainage and topography) of the land proposed for the playing field which identifies constraints which could adversely affect playing field quality; and (ii) Where the results of the assessment to be carried out pursuant to (i) above identify constraints which could adversely affect playing field quality, a detailed scheme to address any such constraints. The scheme shall include a written specification of the proposed soils structure, proposed drainage, cultivation and other operations associated with grass and sports turf establishment and a programme of implementation and prepared by a suitably qualified sports turf consultant. The approved scheme shall be carried out in full and in accordance with the approved programme of implementation. The land shall thereafter be maintained in accordance with the scheme and made available for playing field use in accordance with the scheme. Reason: To ensure that the playing field is prepared to an adequate standard and is fit for purpose and to accord with Development Plan Policy [insert relevant local plan policy] and paragraph 97 of the NPPF Before the sports pitches are brought into use, a Management and Maintenance 4 Scheme for the facility including management responsibilities, a maintenance schedule and a mechanism for review shall be submitted to and approved in writing by the Local Planning Authority after consultation with Sport England. The measures set out in the approved scheme shall be complied with in full, with effect from commencement of use of the sports pitches. Reason: To ensure that new facilities are capable of being managed and maintained to deliver a facility which is fit for purpose, sustainable and to ensure sufficient benefit of the development to sport and to accord with Development Plan Policy[insert relevant local plan policy] and paragraph 97 of the NPPF. 5 (a) Prior to their implementation and use on site, samples or specifications of all materials to be used in the external construction of this development shall be submitted to and approved in writing by the local planning authority.

	(b) The scheme shall be completed using the approved materials before the development is occupied/brought into use.
	REASON: To ensure a satisfactory external appearance.
6	(a) No works shall take place, including any demolition, site clearance or ground works, until a Construction Environmental Management Plan (CEMP) describing how construction will be managed to avoid, minimise and mitigate any adverse construction effects on the environment has been submitted to and approved in writing by the local planning authority. The CEMP shall include mitigation measures required for the purposes of Habitats Regulations Assessment conforming to the recommendations (set in the NE/MEAS consultation response).
	(b) The approved Construction Environmental Management Plan shall be adhered to throughout the construction period for the development.
	REASON: These details are needed prior to the commencement of development in order to ensure that any adverse impact on the environment during the period of construction will be minimised.
7	(a) No development shall take place, including any demolition, site clearance or ground works, until a full phasing plan has been submitted to, and approved in writing by the local planning authority.
	(b) The development shall be implemented in accordance with the approved phasing plan and shall only be varied with the prior written approval of the local planning authority.
	REASON: These details are needed prior to the commencement of development in order to ensure that the phases of development are carried out in a managed way and in order to safeguard the amenity of the surrounding occupiers .
8	(a) The approved landscaping scheme shall be completed either:
	(i) not later than the first planting season following first occupation of the development;
	or (ii) during the appropriate planting season progressively as the development proceeds, in accordance with a programme to be agreed in writing with the local planning authority.
	(b) All works must be carried out to BS 8545:2014 Trees: from nursery to independence in the landscape and BS 4428: 1989 Code of Practice for General Landscape Operations.
	(c) Any trees/plants which die, become diseased, damaged or are removed within 5 years of planting shall be replaced with trees/plants of similar sizes and species or as may otherwise be agreed with the local planning authority in the first available planting season thereafter.
	(d) An audit trail of the plant stock used for the scheme must be submitted to the Local Planning Authority on completion of the planting.

	REASON: It is in the interests of visual amenity and in accordance with the duty of the Council under Section 197 of the Town and Country Planning Act 1990 in respect of the planting and preservation of trees.
9	No part of the development shall be occupied or brought into use until a landscape management plan for all trees and undeveloped areas outside of the curtilage of any dwelling has been submitted to and approved in writing by the local planning authority. The plan shall include details of the timescale, programme and the body responsible for its implementation.
	The approved plan to be implemented in perpetuity. Any successors to the original body responsible for its implementation shall be notified to the local planning authority in writing within one month of any such change occurring.
	REASON: The City Council wishes to ensure that these areas are appropriately managed in the interests of visual amenity.
10	(a) Except for site clearance and remediation, no development shall commence until proposed footpath levels in relation to trees and their root protection areas have been submitted to and approved in writing by the local planning authority.
	(b) The development shall be carried out in accordance with the approved site levels and tree protection levels
	REASON: These details are not included in the application and the Council wishes to ensure that they are satisfactory.
11	The approved tree protection measures, as detailed in the approved Arboricultural Report shall be in place prior to the commencement of the works on site and shall be retained in place and must only be removed with the written agreement from the local planning authority.
	REASON: This action is needed prior to the commencement of development in order to ensure that the protection of trees has been implemented before commencement of any works that may be injurious to tree health, in the interests of visual amenity and in accordance with the duty of the Council under Section 197 of the Town and Country Planning Act 1990
12	(a) No part of the development shall be occupied or brought into use until a management plan for the continuous maintenance of public realm, hard and soft landscaping, in perpetuity for the lifetime of the development, has been submitted to and approved in writing by the local planning authority. The management plan shall include the following details:
	 (i) locations of all new trees (ii) size, species and methods of root containment of all new trees iii) tree pit specification including size, soil type, irrigation, aeration, method of staking/anchorage, surface treatment (iv) 3 5 year post planting maintenance regime, and (v) financial arrangements concerning post adoption routine maintenance obligations.

	(b) The management plan shall be implemented in accordance with the approved details, at nil cost to the City Council.
	REASON: To safeguard visual and residential amenity, and highway safety.
13	(a) Details of the implementation, maintenance and management of the sustainable drainage system shall be submitted to and approved in writing by the local planning authority. Those details shall include:
	 (i) a timetable for its implementation; and, (ii) a management and maintenance plan for the lifetime of the development; (iii) contact details of the person/company responsible for this maintenance.
	(b) The sustainable drainage system shall be implemented in accordance with the approved details before the development is occupied/brought into use, and thereafter managed and maintained in accordance with the approved details.
	REASON: To ensure a satisfactory means of drainage and to manage risk of flooding and pollution in accordance with policies within the Development Plan, Liverpool Flood Risk Management Strategy and NPPF.
14	The surface water drainage of the site shall be designed to prevent the discharge of water on to the public highway in accordance with a drainage design which shall be submitted to and approved in writing by the local planning authority and completed in accordance with the approved details before the development is occupied/brought into use.
	REASON: To prevent unnecessary surface water from being deposited on to the highway thus causing a potential source of danger to other road users.
15	(a) Details of the following external works shall be submitted to and approved in writing by the local planning authority before they are implemented:
	(i) Bin storage facilities (ii) All ground surfaces not built upon (iii) All new boundary treatment, gates and means of enclosure (iv) External Lighting
	(b) The development shall be carried out in accordance with the approved details before the development is occupied/brought into use.
	REASON: These details are not included in the application and the Council wishes to ensure that they are satisfactory.
16	a) Prior to their implementation and use on site, samples or specifications of the following materials to be used in the external construction of this development shall be submitted to and approved in writing by the local planning authority.
	(i) External facing materials (ii) Roofing materials

	(b) The scheme shall be completed using the approved materials before the development is occupied/brought into use.
	REASON: To ensure a satisfactory external appearance.
17	Prior to their installation, details of the specifications and proposed location of all park furniture including benches, picnic benches, seating, bins, shall be submitted and approved in wirting prior to the installtion of each phase of the development. REASON: in the interest of amenity and of ensure an adequate provision of accessible furniture is provided.
18	Prior to installation of any street lighting to the park access points or to the park footpaths, details of the location and specification shall be submitted and approved in writing by the Local Planning Authority
	REASON:In the interest of Pedestrain safety and to comply with accessibility for all standards.
19	Prior to the installation of any associated signage, details of the location and specification shall be submitted and approved in writing by the local planning authority for the avoidance of doubt the main access signage points shall adhere to RNIB best practice recommends installing 'Maps for All' (or similar). These maps provide information in a format suitable for a wide range of users including wheelchair users, visually impaired people, people with learning disabilities, Braille users etc.
	REASON: In the interest of amenity and to ensure that accessibility for all standards are met.
20	No development shall take place on any phase, including any demolition, site clearance or ground works, until a) An investigation and assessment methodology, including analysis suite and risk assessment methodologies has been submitted to and approved by the LPA in writing, prior to any site investigations b) A site investigation and assessment has been carried out by competent persons to
	determine the status of contamination including chemical, radiochemical, flammable or toxic gas, asbestos, biological and physical hazards at the site and submitted to the LPA The investigations and assessments shall accord with current Government and Environment Agency recommendations and guidance and identify the nature and extent of any contaminants present, whether or not they originate on the site, their potential for migration and risks associated with them. The assessment shall consider the potential risks to (i) human health, (ii) controlled waters,
	(iii) property (existing or proposed) including buildings, crops, livestock, pets, woodland and service lines and pipes, (iv) adjoining land,

	(v) ecological systems (vi) archaeological sites and ancient monuments.
	c) A detailed remediation scheme (if required), has been submitted to and agreed in writing with the LPA. This scheme shall include an appraisal of remedial options, implementation timetable, works schedule, site management objectives, monitoring proposals and remediation validation methodology. The scheme once completed must ensure that the site will not qualify as contaminated land under Part IIA of the Environmental Protection Act 1990 in relation to its intended use.
	REASON: These details are needed prior to the commencement of development in order to ensure that risks from land contamination to future users of the land and neighbouring land are minimised, and to ensure that the development can be carried out safely without unacceptable risks to workers, neighbours and other offsite receptors.
21	After development commences and prior to first occupation;
	a) Following completion of the measures identified in the approved remediation scheme and prior to occupation of any part of the development, a verification report which shall confirm the adequacy of remediation must be prepared and submitted to and approved in writing by the local planning authority before this condition will be discharged.
	If a phased approach to the development is being proposed, then a validation/completion report for an agreed number of plots within each of the proposed phases shall be submitted to the local planning authority and approved in writing before the condition relating to the phase in question shall be discharged.
	b) If any potentially contaminated (unusual/suspect) material or flammable/toxic gas not previously identified is discovered, this must be reported in writing to the local planning authority and a further assessment and a revised remediation scheme will be required by the local planning authority. If no contamination is found then this should be detailed in the remediation verification report.
	REASON: To ensure that risks from land contamination to future users of the land and neighbouring land are minimised, together with those to controlled waters, property and ecological systems, and to ensure that the development can be carried out safely without unacceptable risks to workers, neighbours and other offsite receptors.
22	Prior to installation of any gym equpiment, details of the location and specification shall be submitted and approved in writing by the local Palnning Authority:
23	Reason: In the interest of pedestrain safety and general amenity. All external lighting fittings shall be orientated so that any measurements taken at any
23	nearby habitable roomed windows do not exceed 6 lux.
	REASON: It is in the interests of the amenity of residents in the vicinity of the application site.
24	The surface water drainage of the site shall be designed to prevent the discharge of water on to the public highway in accordance with a drainage design which shall be

submitted to and approved in writing by the local planning authority and completed in accordance with the approved details before the development is occupied/brought into use. Reason: To prevent unnecessary surface water from being deposited on to the highway thus causing a potential source of danger to other road users. 25 No part of the development shall be occupied or brought into use until the areas indicated on the submitted plans to be set aside for parking and servicing have been surfaced, drained and permanently marked out or demarcated in accordance with the details and specifications shown in drawing number [..(i)..]. The parking and servicing areas shall be retained as such thereafter. REASON: To ensure that adequate provision is made on the site for the traffic generated by the development, including allowance for safe circulation, manoeuvring, loading and unloading of vehicles as well as parking, and that hard-surfaced areas have a satisfactory appearance. 26 (a). No works shall take place, including any demolition, site clearance or ground works, until a Construction Method Statement comprehensively detailing the phasing and logistics of demolition/construction has been submitted to and approved in writing by the local planning authority. The method statement shall include, but not be limited to: (i) Construction traffic routes, including provision for access to the site (ii) Entrance/exit from the site for visitors/contractors/deliveries Location of directional signage within the site (iii) Siting of temporary containers (iv) (v) Parking for contractors, site operatives and visitors (vi) Identification of working space and extent of areas to be temporarily enclosed and secured during each phase of demolition/construction (vii) Temporary roads/areas of hard standing Schedule for large vehicles delivering/exporting materials to and from site (viii) Storage of materials and large/heavy vehicles/machinery on site (ix) Measures to control noise and dust (x) Details of street sweeping/street cleansing/wheelwash facilities (xi) (xii) Details for the recycling/disposing of waste resulting from demolition and construction works Hours of working (xiii) (xiv) Phasing of works including start/finish dates (b). The approved Construction Method Statement shall be adhered to throughout the construction period for the development. REASON: These details are needed prior to the commencement of development in order to ensure that adequate on-site provision is made for construction traffic. including allowance for the safe circulation, manoeuvring, loading and unloading of

vehicles, as well as parking, and to reduce impact on residential amenity and the

general amenity of surrounding occupiers during construction.

27	The internal connecting footpaths/footways through the site and the pedestrian access points which lead to Springfield Park are required to be open and accessible at all times to the general public in perpetuity.
	Reason: To allow the public open space within the site to be fully accessible and open without any restrictions to access.
28	No part of the development shall be occupied or brought into use until the areas indicated on the submitted plans to be set aside for parking have been surfaced, drained and permanently marked out or demarcated in accordance with the details and specifications. The parking and servicing areas shall be retained as such thereafter.
	Reason: To ensure that adequate provision is made on the site for the traffic generated by the development, including allowance for safe circulation, manoeuvring, loading and unloading of vehicles as well as parking, and that hard-surfaced areas have a satisfactory appearance.
29	No part of the development shall be occupied or brought into use until the areas indicated on the submitted plans to be set aside for cycle parking have been provided in accordance with the details and specifications shown in drawing number [(i)]. The cycle parking shall be retained as such thereafter.
	REASON: To ensure that adequate provision is made for parking cycles on the site; and to establish measures to encourage non-car modes of transport.

INFORMATIVES

The applicant is advised that the scheme should comply with the relevant industry Technical Guidance, including guidance published by Sport England, National Governing Bodies for Sport. Particular attention is drawn to 'Natural Turf for Sport', (Sport England, 2011)

The applicant is reminded that it is an offence to allow material to be carried from the site and deposited on or cause damage to the highway from uncleaned wheels or badly loaded vehicles. The Highway Authority will seek to recover any expenses incurred in clearing, cleaning or repairing highway surfaces and will prosecute persistent offenders under Sections 131, 148 & 149 of the Highways Act 1980.

Any landscaping within the site is to be positioned and maintained such that it does not encroach on or over the adjacent highway.

Prior to commencement of development a joint inspection between the applicant and the Highway Authority of the condition of the existing footways/carriageways within the vicinity of the site should be carried out. The applicant is advised to contact Council's Highway Development Control Team on email HDC@liverpool.gov.uk for further details.

The grant of planning permission shall not be construed as authority to erect scaffolding, hoarding or any other device or apparatus for which a licence must be sought from the Highway Authority. The applicant is advised to contact the Council's Highway Development Control Team by email: lcchighwaysskipsscaffold@liverpool.gov.uk for further advice. It should be noted that there is a fee associated with this process.

During the site works the contractor shall pay full regard to the best practicable means available in respect of the control of noise and dust from the site. In addition, no operations which are audible at the site boundary shall be carried out:

- (i) outside the hours of 0800 to 1800 weekdays
- (ii) outside the hours of 0800 to 1300 Saturdays, and
- (iii) at any time on Sundays or Bank Holidays.

The applicant is reminded that it is an offence to allow material to be carried from the site and deposited on or cause damage to the highway from uncleaned wheels or badly loaded vehicles. The Highway Authority will seek to recover any expenses incurred in clearing, cleaning or repairing highway surfaces and will prosecute persistent offenders under Sections 131, 148 & 149 of the Highways Act 1980.

It is an offence to erect a sign on the public highway without permission of the Highway Authority. The grant of planning permission does not entitle a developer to erect any form of signage (directional, advertisement or otherwise) on the highway and consent is required from the Highway Authority. The applicant is advised to contact the Council's Highway Development Control Team by email: HDC@liverpool.gov.uk for further advice.

The City Council expects strict compliance with all planning conditions and requests that particular attention is drawn to conditions that are required to be formally discharged by way of an application. Adequate information to discharge pre-commencement planning conditions should be submitted to, and approved in writing by the local planning authority before any works start on site. Failure to discharge conditions before commencing development could result in the development being unlawful or enforcement action being taken. A fee is payable for each application made to discharge planning conditions.

TOWN AND COUNTRY PLANNING ACT 1990 TOWN AND COUNTRY PLANNING (GENERAL DEVELOPMENT PROCEDURE) ORDER 1995

NOTES FOR PLANNING DECISION NOTICES

OTHER CONSENTS

This permission refers only to that required under the Town and Country Planning Acts and does not include any consent or approval under any other enactment, byelaw, order or regulation. In particular, if building alterations are involved these may also require consent under the Building Regulations and before commencing work this aspect should be discussed with Building Control (Email: building.control@liverpool.gov.uk Tel: 0151 233 4458/ 4467). Where a building regulations approval is obtained and this requires changes from your planning permission, revised drawings must be submitted to the Divisional Manager Planning.

COMPLIANCE WITH THE PERMISSION/CONSENT

It is important that this permission/consent is implemented strictly in accordance with the plans approved by the consent. Where a planning permission is granted subject to conditions it is important that these are fully complied with. Non-compliance with the conditions of the permission/consent may well result in a Breach of Condition Notice being served on you or any other appropriate enforcement action required to remedy the breach of planning control.

APPEALS TO THE PLANNING INSPECTORATE

If you are aggrieved by the decision of the city council as local planning authority then you can appeal to the Planning Inspectorate. *Please note, only the applicant possesses the right of appeal.*

If you want to appeal, then you must do so within six months of the date of issue of this notice.

The Planning Inspectorate have introduced an online appeals service which you can use to make your appeal online www.gov.uk/government/organisations/planning-inspectorate. The Inspectorate will publish details of your appeal on the internet (on the Appeals area of the Planning Portal). This may include a copy of the original planning application form and relevant supporting documents supplied to the local authority by you or your agent, together with the completed appeal form and information you submit to the Planning Inspectorate. Please ensure that you only provide information, including personal information belonging to you that you are happy will be made available to others in this way. If you supply personal information belonging to a third party please ensure you have their permission to do so. More detailed information about data protection and privacy matters is available on the Planning Portal.

If you do not have access to this service, forms can be obtained from Initial Appeals, The Planning Inspectorate, Temple Quay House, 2 The Square, Temple Quay Bristol, BS1 6PN. (Tel: 0303 444 5334 or e-mail: enquiries@pins.gsi.gov.uk). You must use a Planning Appeal Form when making your appeal. If requesting forms from the Planning Inspectorate, please state the appeal form you require.

PURCHASE NOTICES

If the local planning authority or the Office of the Deputy Prime Minister refuses to grant permission to develop land or grants it subject to conditions, the owner may claim in certain circumstances that the land has become incapable of development. In these circumstances, the owner may serve a Purchase Notice on the Council under Part VI of the Town and Country Planning Act 1990, requiring the Council to purchase the owners interest in the land.

COMPENSATION

In certain limited circumstances, a claim must be made against the local planning authority for compensation. The circumstances in which compensation is payable are set out in Parts VI and V of the Town and Country Planning Act 1990

NEW RESIDENTIAL DEVELOPMENT

In order to ensure that minimum disruption occurs once a development is completed; developers are asked to contact all the public utilities to ensure that adequate services are provided at the outset. In particular developers are asked to contact the Cable TV provider

PUBLIC NOTICE - PARTY WALL ETC. ACT 1996

From the 1 July 1997 any person intending to carry out works affecting party walls or involving excavations for foundations adjacent to a party wall will be required to serve notice on all adjoining owners before work commences. You are advised to engage the services of a private surveyor to act on your behalf in any formal private procedures and agreements that you are now required, by The Party Wall etc. Act 1996, to enter into. Failure to comply with the Act may result in civil action being taken against you.

ALDER HEY CHILDRENS HEALTH PARK PROJECT

GENERAL SPECIFICATION FOR SPRINGFIELD PARK

1. Introduction

The delivery of the Trust's Children's Health Park Project and ultimately the redevelopment of Alder Hey shall require the reconfiguration of the existing Springfield Park and laying out of a new neighbourhood park on a site area that shall include equivalent areas of the land to be exchanged between the Trust and Liverpool City Council. The total site area of the new neighbourhood park shall be equivalent in size to the total site area of the existing Springfield Park. The vision, shared by the Trust and Liverpool City Council, is for a new neighbourhood park, delivered as a fresh, modern and unified public resource with paving forms and surfaces flowing seamlessly whilst incorporating existing trees and exciting features together with the relocated Nelson obelisk.

It is accepted by both parties that the final design solution and layout of Springfield Park cannot be currently determined. This General Specification for Springfield Park is intended to specify the general minimum standards to be delivered in the park.

2. Existing Trees

All work involving existing trees shall be informed by a full survey in accordance with BS5837 (2005). All proposals for tree removal, tree surgery and tree protection shall follow the associated recommendations entitled "Trees in Relation to Construction" and be carried out to the satisfaction of the Parks and Greenspaces Business Unit of Liverpool City Council.

3. Footpath Network

A network of tarmac footpaths with concrete edgings shall form part of the design solution. The footpath network shall, where appropriate, either establish new or incorporate existing routes in providing a link to various park uses but also in linking the neighbourhood communities which surround the hospital and park sites thus supporting the creation of the new park as a valuable community resource. Where existing paths are retained, these should be resurfaced as necessary to match new paths so ensuring that the restored park represents uniformed quality. The main footpath circuit shall be not less than 3 metres wide and the remaining paths must allow for passing wheelchairs. All paths are to be constructed to vehicular standards so accommodating maintenance vehicles. 150x50mm precast concrete edgings with in-situ concrete haunching shall be used and the paving will comprise 200mm granular bed with 60mm 0/20 DBM open-graded binder course and 20mm 0/20 DBM surface course. Natural stone paving, laid to highlight entrances and feature areas, must also be able to support vehicular traffic.

4. Soft Landscaping

Soft landscaping shall be carried out to a high standard in accordance with BS4428 the code of practice for general landscaping operations. Imported topsoil will be to BS3882 and nursery stock (trees and shrubs) to BS3936. Semi-mature trees must comply with BS4043 and turf BS3969. Wildflower seed may be sourced from the National Wildflower Centre or other suppliers.

Allowance should be made for the importation of fit for purpose subsoil, in accordance with the contaminated land risk assessment for Site B, where the existing in-situ material is found to be unsuitable.

Topsoil shall be a minimum depth of 450mm to shrub beds and 150mm to grass areas, although it is agreed by both parties that topsoiling shall only be a requirement for the replacement park area and not a specific requirement of the retained park area.

Tree pits must be of a sufficient size to allow the trees to grow and not become "pot bound" or they will remain vulnerable to vandalism. In hard standing areas a typical individual tree pit has to be a minimum 3m x 3m area and up to 1m deep or for a continuous planting trench it may be reduced to 2 metres width. The depth can vary depending on soil conditions, drainage etc. but the tree soil must be a minimum of 7 cubic metres per tree. A 1m³ pit for up to extra heavy standard trees in soft areas is acceptable as long as the surrounding area has reasonable topsoil cover and growing conditions.

The method of support needs to be determined by the site and the size of tree being planted. Underground guying is generally the preferred method for large semi-mature trees in pedestrianised areas whereas tree staking for extra heavy standards in verges and soft surfaces is more appropriate. Over-ground guying is not acceptable. Each method of staking will be dictated by the size of the tree and the site requirements.

The soft landscaping (including any replacement planting due to latent defects) must be carried out during the planting season.

The works shall comply with the following (as amended):

BS 3936: Specification for nursery stock

Part 1 Trees and shrubs (1992)

Part 2 Roses (1990)

Part 4 Forest trees (1984)

Part 5 Poplars and willows (1985)

Part 9 Bulbs, corms and tubers (1998)

Part 10 Groundcover plants (1989)

BS 3882: 1994 Specification for topsoil

BS 3969: 1998 Turf for general landscape purposes

Part 4 Plant description (1966)

Part 5 Horticultural, arboricultural and forestry practice (1969)

BS 3975: Glossary for landscape work

BS 3998: 1989 Recommendations for tree work

BS 4043: 1989 Transplanting semi-mature trees

BS 4428: 1989 Code of practice for general landscape operations

BS 5837: 1991 Guide for trees in relation to construction

BS 5837: 2005 Trees in relation to construction — Recommendations

BS 7370: 1991 Grounds maintenance

5. Sports Provision

Two (2) senior reserve standard grass football pitches are to be provided in the new park. Full details shall be agreed with Liverpool City Council's (Development Manager for Sport and Recreation) and will include a piped drainage system comprising laterals and mains with silt traps with backfill of clean, hard stone and precast concrete inspection chambers plus soakaway(s) as required.

The perforated drain pipes, purpose made junctions and connectors shall be of an approved make and conform to BS 4962: 1982. 80mm Laterals at 5m centres shall be linked to 160mm mains using 67.5 degree Multi-Junctions as WavinCoil. Trenches for mains shall be 200mm wide with 600mm minimum cover and trenches for laterals shall be 150mm wide with 450mm minimum cover.

Premium grade topsoil to BS3882 (1994) shall be 150mm minimum depth and used together with approved seed mixture, fertiliser and topdressing sand. Allow for additional approved sand/topsoil topdressing for levels regulation. Supply and fix proprietary goal sockets and supply goal posts to suit.

A new tarmac Multi-Use Games Area (MUGA) is also to be provided to EN 15312 (2007) incorporating perimeter fencing, multi-sport goal ends and line marking as Montana from SMP Arena range or equal and approved. 150x50mm precast concrete edgings with in-situ concrete haunching shall be used and the paving will comprise 200mm granular bed with 60mm 0/20 DBM open-graded binder course and 20mm 0/20 DBM surface course.

6. Active Recreation

Play facilities in the new play areas shall use durable equipment and street furniture and have a steel fence around infant areas, e.g. 1.4m bow-topped galvanised steel railing with two self-closing steel gates. A durable impact-absorbent surface shall be laid where necessary. Other more natural materials can be used to form older children's play facilities. All must conform to RoSPA guidelines and be fully inclusive and accessible, encouraging use by all. Typical layouts may include:

Infant areas:

Small multi-activity unit with slide, infant swing (4 seats), inclusive swing (2 seats), inclusive roundabout, seesaw, rocking items (up to 3 including sit-in models), play panels/interactive units

Junior areas:

Swing (flat seats x 4), swing (cantilever-basket/tyre), free-standing slide, large multi activity/climbing unit, rocking item (e.g. rocking horse), seesaw (e.g. Gyrospiral), roundabout/rotational item (e.g. overhead spinner), aerial slide, climbing boulder(s).

Colourful and textural equipment will be used, especially in infant/junior areas, including a blend of both traditional play equipment such as swings, and slides, along with more contemporary and challenging equipment for older children (8-13 yr olds) to provide a diverse play experience. Natural elements should also be included to enhance the design and increase play value, whilst also complimenting the immediate surroundings of the play areas. The design should include the provision of seating in and around each of the play areas. A site signboard should also be provided by each play area entrance, detailing the site's specification.

The park is also to be furnished with fitness equipment and a trim trail. A teen shelter and a yoga shelter will also be installed.

7. Features

The design and quality of special features within the new park will be vital to its success. These will include links, public art, park entrances and relocation/conservation of the Nelson obelisk. Detailed drawings and specifications in this respect shall be agreed with the Liverpool City Council's Parks and Greenspaces Business Unit Manager as part of the planning application and Landscape and Environmental Management Plan and in accordance with the Land Transfer Agreement.

Any swales, ponds, lakes, wetlands or other water features will be contained within the hospital site and will be managed and maintained by the Trust.

Any helipad facility must not be located within the area of the Park controlled by Liverpool City Council.

8. Site Furniture

New site furniture, to be agreed with the Liverpool City Council's Parks and Greenspaces Business Unit Manager, is to be provided throughout the reconfigured public open space including:

- Seating 24no Broxap ref BX2060 (anti-vandal steel slats) set in concrete.
- Picnic tables 8no Broxap ref BX17 4016-1 set in 3 x 3m concrete apron.
- Litter bins 12no Broxap ref BX45 2550-S set in concrete foundation.
- Dog bins 12no Broxap ref BX45 2591-PM set in concrete foundation.
- Welcome signs 4no 1518 x 1917mm cast aluminium sign with raised text supported on tapered cast iron bollards with decorative rings and special finial.
- Information display cabinets 4no1518 x 1917mm cast aluminium cabinet with lockable doors (incorporating vandal-resistant transparent panels) supported on tapered cast iron bollards with decorative rings and special finial.
- Details of layout, artwork and information included on signage and interpretation panels to be subject of detailed discussion and agreement between the parties.
- Finger posts 10no 2500mm high tapered cast iron column with decorative rings and special finial. Cast aluminium fingers with raised lettering.
- Interpretation lectern 3no (Nelson Memorial, former Loop line and former hospital site) 594 x 420mm cast aluminium panel 1000mm high tapered cast iron column with decorative rings plus colourfast GRP graphic panel.
- Railings ornamental internal and feature railings as TR300 2000mm high from TangoRail (0844-836-0008) or equal and approved. New boundary railings and plinth to match existing boundary. Existing railings, etc to be replaced or repaired as required.
- Access gates (including provision for park maintenance vehicles) to match railings as described above. Pedestrian safety barriers to be provided adjacent to highways and internal roads.

10. Car Parking

Adequate car parking spaces shall be constructed to serve the new park which will be surfaced in tarmac and contained by concrete kerbs with a positive drainage system to adoptable standards. Thermo-plastic road markings and highway signage will be provided. The boundary between the car parking area and the park will be cast iron single rail and post fencing Broxap ref BX 1689-RT 450mm high.

11. Site Drainage

A land drainage system comprising laterals and mains with backfill of clean, hard stone shall be provided throughout the park including silt traps and inspection chambers plus soakaway(s)/filtration trenches as required, although it is agreed by both parties that any land drainage shall only be a requirement for the replacement park area and not a specific requirement of the retained park area.

12. Lighting

It has been agreed between the parties that the provision of lighting within Springfield Park is not currently required by the City Council or has been budgeted for as part of the Park Works. Should at a later date lighting provision be required by the City Council, the parties shall mutually agree all standards, specification, financing and works arrangements.

13. Maintenance and Rectification Period

The Trust shall provide a contractual maintenance and rectification period ("Rectification Period") in accordance with the obligations of the Land Exchange Agreement and the approved landscape environmental management plan". For the avoidance of doubt, Liverpool City Council shall continue to remain responsible for the management of Springfield Park.

Following completion of the Park Works, the Trust shall be responsible for the management and maintenance of all boundaries between Springfield Park and Alder Hey Children's NHS Foundation Trust. For the avoidance of doubt, Liverpool City Council shall remain responsible for the management of all other boundaries.

Following expiry of the contractual maintenance and rectification period Liverpool City Council shall be responsible for the management and maintenance of all landscaped elements and structures within its land and all other boundaries.

Liverpool City Council shall adopt the park on completion of the Park Works.

Liverpool City Council shall procure the relevant public liability insurances for all areas of land within its ownership irrespective of whether the land is subject to the maintenance and rectification period ("Rectification Period").

Liverpool City Council shall procure the relevant public liability insurances and continue to assume full management responsibility for all areas of land which remain accessible to the public throughout the park works.

14. Interim Arrangements for Existing Park

Before work commences on the eastern side of the existing park suitable arrangements must be put in place from a grounds maintenance perspective. A secure north-south boundary shall be constructed with gate control being a major priority. Adequate provision for maintenance vehicles, footpaths, etc must be

made by the introduction of new access points at agreed locations around the boundary of the temporarily-reduced park site. Additional paving works will also be needed to link these access points to the existing pathways.

Health & Safety matters will be of vital importance and associated factors such as temporary signage must be addressed. It is essential that the available public open space continues to function at a high level throughout the interim period. Of particular note will be the relocation of the Nelson Memorial.